Tuesday, May 20, 2014

Neurons in 3-D

In Vivo Like Neurite Outgrowth Cultures

Culturing in 3-D requires potent Primary Neurons. Here researchers use our e18 Rat Cortical Neurons in developing their 3-D assays: Chandrasekhar R. Kothapallia, Peyman Honarmandib. Theoretical and experimental quantification of the role of diffusive chemogradients on neuritogenesis within 3D collagen scaffolds. Acta Biomaterialia. Available online 14 May 2014. http://dx.doi.org/10.1016/j.actbio.2014.05.009

Abstract: A critical challenge to regenerating close mimics of native axonal pathways under chronic neurodegenerative disease or injury conditions is the inability to stimulate, sustain and steer neurite outgrowth over a long distance, till they reach their intended targets. Understanding neurite outgrowth necessitates quantitative determination of the role of molecular gradients on growth cone navigation under dynamic physiological conditions. High-fidelity biomimetic platforms are needed to computationally and experimentally acquire and analyze spatio-temporal molecular gradient evolution and the growth cone response across multiple conditions along this gradient pathway. In this study, we utilized a simple microfluidic platform in which diffusive gradients were generated within a 3D porous scaffold in a defined and reproducible manner, and its characteristics (spatio-temporal gradient, steepness, diffusion time, etc.) precisely quantified at every specific location within the scaffold. Using this platform, we show that the cortical neurite response within 3D collagen scaffolds, at both the cellular and molecular level, is extremely sensitive to subtle changes in localized concentration and gradient steepness of IGF-1 within that region. This platform could also be used to study other biological processes such as morphogenesis and cancer metastasis, where chemogradients are expected to significantly regulate the outcomes. Results from this study might be of tremendous use in designing biomaterial scaffolds for neural tissue engineering, axonal pathway regeneration under injury or disease, and in formulating targeted drug delivery strategies.
Image: Neurons in 3-D Assay
Neuromics' provides many Stem and Primary Cell Assay Solutions including tools for 3-D Cultures. We also offer services studying the effects of small molecules and compounds on Stem Cell expansion, differentiation and migration. To learn more contact me at 612-801-1007 or pshuster@neuromics.com.

No comments: