Wednesday, December 09, 2015

Kv Channels and Pain Transmissiom

i-Fect TMis a Proven Tool for Gene Manipulation in Studying All Types of Pain

I previously posted on use of our i-Fect Transfection Kit to silence Kv Channels Receptors. This has enabled researchers to study the role of these receptors in vitro and in vivo (see:i-Fect™ Delivers Your siRNA Payload).

Sample Data

Figure: Figures. siRNA-mediated knockdown of Kv1.1 expression in thoracic DRG significantly increased gastric sensitivity in naive adult rats. (A) Western blots showed a significant decrease in Kv1.1 protein in thoracic DRG (T8–T12) after intrathecal treatment with Kv1.1 siRNA but not with control siRNA. siRNA treatment did not alter TrpV1 expression (n = 5 rats each; *P < .01 vs control siRNA). (B) Naive rats treated with Kv1.1 siRNA showed a significant increase in VMR to gastric distention (n = 5 rats each, compared with pretreatment baseline; *P < .05). (C) Treatment with control siRNA had no significant effect on gastric hypersensitivity. (D) Patch clamp recordings from freshly dissociated gastric DRG neurons from FD-like and PND 10 saline-treated littermate controls showed a significant decrease in rheobase in FD-like rats (*P < .05), and (E) a significant increase in the number of action potentials elicited by current injection at 3× the rheobase in gastric DRG neurons from FD-like rats (*P < .05). (F) Sample voltage vs time traces showing action potentials evoked at ×1, ×2, and ×3 rheobase. The patch clamp data were obtained from 16 cells from 5 PND 10 saline control rats and 19 cells from 5 FD-like rats

I am pleased to share with you a new reference detailing how research use i-Fect to optimize and deliver euchromatic histone-lysine N-methyltransferase-2 (G9a) siRNA. This brings the number of publications referencing use of our Transfection Kits to over 45: Geoffroy Laumet, Judit Garriga, Shao-Rui Chen, Yuhao Zhang, De-Pei Li, Trevor M Smith, Yingchun Dong, Jaroslav Jelinek, Matteo Cesaroni, Jean-Pierre Issa & Hui-Lin Pan G9a is essential for epigenetic silencing of K+channel genes in acute-to-chronic pain transition. Nature Neuroscience (2015) doi:10.1038/nn.4165.

The authors report: "Selective knockout of the gene encoding G9a in DRG neurons completely blocked K+ channel silencing and chronic pain development after nerve injury. Remarkably, RNA sequencing analysis revealed that G9a inhibition not only reactivated 40 of 42 silenced genes associated with K+ channels but also normalized 638 genes down- or upregulated by nerve injury."

I will continue to post here new and unique solutions and related referencing for our Gene Expression Analysis Tools.

2 comments:

Venus Timberlake said...

There are more than 100 other naturally occurring modified nucleosides,The greatest structural diversity of modifications can be found in tRNA,while pseudouridine and nucleosides with 2'-O-methylribose often present in rRNA are the most common. The specific roles of many of these modifications in RNA are not fully understood. However, it is notable that, in ribosomal RNA, many of the post-transcriptional modifications occur in highly functional regions, such as the peptidyl transferase center and the subunit interface, implying that they are important for normal function.

andrea wang said...

High throughput sequencing technology RNA small sequencing, can be a one-time access to millions of RNA small sequence, and can quickly identify a certain organization in a specific state of all known RNA small and find a new RNA small.