Friday, November 25, 2011

IF Staining of Human Primary Neurons

Primary Neurons are inputs or raw materials for cell based assays. When cells do not work as promised, there are multiple costs including lost time and potentially flawed data. Neuromics strives to provide easy to culture, potent and cost effective cells. Proving these capabilities is an ongoing activity for us. This includes testing these cells using our markers.

I wanted to share new immunofluorescence images. Here is a link to the protocol: staining primary neurons.

hN2 cells stained with our chicken polyclonal antibody to Vimentin, in red. Islands of Hn2 cells form after 4 days in culture forming beautiful flower like structures. Vimentin is a well established marker of early differentiating neuronal lineage cells. Taken with a 10X objective lens. Blue staining is the nuclear DNA.
hN2 cells grown in culture for 4 days and stained with our chicken polyclonal to MAP2, a marker of neurons. Differentiating cells show strong cytoplasmic staining for MAP2 . Blue stain is DAPI and reveals cell nuclei of some non neuronal cells in this culture.
hN2 cells grown in culture for 4 days and stained with our chicken polyclonal to Neurofilament light or low molecular weight chain NF-L, a marker of neurons. Many of the differentiating cells show strong cytoplasmic and clearly fibrillar staining for NF-L. Blue stain is DAPI and reveals cell nuclei of some non neuronal cells in this culture.

Sunday, November 20, 2011

Fear Changes Hippocampus Neuropns

Fear in mice catalyzes rapid accumalation of EphrinB2 pyramidal neurons of the CA1 area.

This study suggests that rapid accumulation of EphrinB2 in hippocampal CA1 neurons is involved in the behavioural and cellular modifications induced by contextual fear conditioning. A similar mechanism does not appear to occur in lateral amygdala neurons, in spite of the robust behavioural and cellular modifications induced in such structure by cued fear conditioning: Antonio Trabalzaa, Sandra Colazingaria, Carmelo Sgobiob, Arturo Bevilacqua. Contextual learning increases dendrite complexity and EphrinB2 levels in hippocampal mouse neurons. Behavioural Brain Research. doi:10.1016/j.bbr.2011.11.008.

Friday, November 11, 2011

Diabetic retinopathy blindness-root causes

Diabetic retinopathy is a leading cause of acquired blindness. This publication from our friends at University of Buenos Aires touches on potential root causes: Diego C. Fernandez, Laura A. Pasquini, Damián Dorfman, Hernán J. Aldana Marcos, Ruth E. Rosenstein. Early Distal Axonopathy of the Visual Pathway in Experimental Diabetes. doi:10.1016/j.ajpath.2011.09.018
" In animals that had been diabetic for 6 weeks, a large increase in astrocyte reactivity occurred in the distal (but not the intraorbital) portion, which coincided with significant axon loss. Moreover, profound myelin alterations and altered morphologic features of oligodendrocyte lineage were observed at the distal (but not the proximal) optic nerve portion. The present results suggest that axoglial alterations at the distal portion of the optic nerve could be the first structural change in the diabetic visual pathway."
The authors used our PDGFR Alpha/CD140A Marker to Study the change in Oligodendrocyte Lineage precursor cells. Expression of the protein was increased in these cells with the presence of disorganized and hypertrophic cells. This could disrupt formation of myelin resulting the pathological alteration at the distal portion.

Tuesday, November 08, 2011

Opioid Induced Itch

Our widely used and frequently published Opioid Receptors Antibodies are used for a spectrum of pain research. Here is an interesting study on the root causes of opioid induced itch.

Xian-Yu Liu, Zhong-Chun Liu, Yan-Gang Sun, Michael Ross1, Seungil Kim, Feng-Fang Tsai, Qi-Fang Li, Joseph Jeffry, Ji-Young Kim, Horace H. Loh, Zhou-Feng Chen. Unidirectional Cross-Activation of GRPR by MOR1D Uncouples Itch and Analgesia Induced by Opioids. Cell, Volume 147, Issue 2, 14 October 2011, Pages 261-262.


Root Causes: Spinal opioid-induced itch, a prevalent side effect of pain management, has been proposed to result from pain inhibition. We now report that the μ-opioid receptor (MOR) isoform MOR1D is essential for morphine-induced scratching (MIS), whereas the isoform MOR1 is required only for morphine-induced analgesia (MIA). MOR1D heterodimerizes with gastrin-releasing peptide receptor (GRPR) in the spinal cord, relaying itch information. We show that morphine triggers internalization of both GRPR and MOR1D, whereas GRP specifically triggers GRPR internalization and morphine-independent scratching. Providing potential insight into opioid-induced itch prevention, we demonstrate that molecular and pharmacologic inhibition of PLCβ3 and IP3R3, downstream effectors of GRPR, specifically block MIS but not MIA. In addition, blocking MOR1D-GRPR association attenuates MIS but not MIA. Together, these data suggest that opioid-induced itch is an active process concomitant with but independent of opioid analgesia, occurring via the unidirectional cross-activation of GRPR signaling by MOR1D heterodimerization.